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Abstract
In this paper, we derive new identities for the spectrum of the quantum Euler
top in terms of the sites α0, . . . , αn and the zeros of the joint eigenfunctions.
Our identities improve previous formulas obtained by Kalnins and Miller (1992
J. Phys. A: Math. Gen. 25 5663–75).
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1. Introduction

For any given set of positive parameters α0 < α1 < · · · < αn, the quantum Euler top is defined
as the family of n + 1 partial differential operators

Pl =
∑
i<j

σ
(l)
ij (α)X2

ij (l = 0, . . . , n).

Here σ
(l)
ij denotes the lth symmetric function in the α parameters with αi and αj deleted, and

Xij is the killing vector field defined by rotation in the i, j plane, i.e.

Xij = xi

∂

∂xj

− xj

∂

∂xi

,

with (x0, . . . , xn) ∈ R
n+1.

It is easy to verify that the Pl’s are commuting, self-adjoint elliptic operators acting on the
n-sphere Sn. Moreover, P0 = �Sn , the constant curvature Laplacian on Sn. Consequently, the
joint eigenfunctions are spherical harmonics that form a Hilbert basis of L2(Sn). The quantum
Euler top constitutes an important example of quantum completely integrable systems [6, 9].

To describe the joint eigenfunctions in more details, it is customary to introduce elliptic or
sphero-conal coordinates (u1, . . . , un) on Sn. These are defined as the n zeros of the rational
function

n∑
j=0

x2
j

z − αj

=
∏n

j=1(z − uj )∏n
j=0(z − αj )

. (1.1)
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Under the additional assumption
∑n

j=0 x2
j = 1, the uj’s form an orthogonal system of

coordinates on Sn obtained from the intersection of the unit n-sphere with a family of confocal
cones. Moreover, they satisfy the following interlacing property:

α0 < u1 < α1 < u2 < α2 < · · · < αn−1 < un < αn.

For any multi-index γ = (γ0, . . . , γn) ∈ {0, 1}n+1, we denote the joint eigenfunctions
of the operators Pl that are spherical harmonics of degree k by �

γ

k and their corresponding
eigenvalues by λ

γ

k,l , i.e.

Pl�
γ

k = λ
γ

k,l�
γ

k (l = 0, . . . , n),

When separating the variables using elliptic coordinates, the joint eigenfunctions are expressed
as the product

�
γ

k (u1, . . . , un) =
n∏

j=1

ψ
γ

k (uj ) :=
n∏

j=1

n∏
i=0

|uj − αi |γi/2 · φγ
m(uj ), (1.2)

where φ
γ
m is a polynomial of degree m := (k − |γ |)/2. In addition, the function ψ

γ

k is a
solution of the generalized Lamé equation:

n∏
i=0

(x − αi)
d2

dx2
ψ

γ

k (x) +
1

2

n∑
i=0

∏
k �=i

(x − αk)
d

dx
ψ

γ

k (x) = 1

4

(
n−1∑
i=0

λ
γ

k,ix
n−i−1

)
ψ

γ

k (x). (1.3)

For these reasons, the joint eigenfunctions �
γ

k are often called Lamé harmonics of degree k.
The corresponding function ψ

γ

k is called a Lamé function of the first kind, whereas φ
γ
m is called

a Lamé polynomial. The polynomial

V
γ

k (x) =
n−1∑
i=0

λ
γ

k,ix
n−i−1

is often referred to as a Van Vleck polynomial. Note that the coefficients of V
γ

k are given by
the joint eigenvalues λ

γ

k,l of the Pl. For a more detailed derivation of these facts, we refer the
readers to [1, 12].

Based on these observations, Kalnins and Miller ([9], equation (2.12)) obtained
complicated formulas in terms of differential operators for the computations of the λ

γ

k,l’s
as functions of the αk’s and the zeros of the Lamé polynomials. The purpose of this paper
is to give explicit expressions that are much simpler than those of Kalnins and Miller. This
is the content of the following section. In the last section, we give some applications to the
asymmetric top.

2. Main result

We denote by θ
γ

k,1, . . . , θ
γ

k,m the zeros of the Lamé polynomials φ
γ
m appearing on the right-hand

side of (1.2). Our goal is to establish the existence of simple relations for the eigenvalues
λ

γ

k,0, . . . , λ
γ

k,n−1 as functions of the parameters α0, . . . , αn and θ
γ

k,1, . . . , θ
γ

k,m.
Before stating our main result, we need to recall some basic facts about the generalized

Lamé equation. First, the zeros of V
γ

k as well as those of φ
γ
m are simple and lie within the

interval (α0, αn). Moreover, none of the αj is a zero of φ
γ
m. However, it is possible for V

γ

k to
have a zero at some αj for j = 1, . . . , n − 1. These results and their proofs can be found in
[11].

Let n1 ∈ {0, . . . , n − 1} be the number of zeros of V
γ

k at the αi’s. Since the generalized
Lamé equation (1.3) is invariant under permutations of the parameters αj , we can reorder them
in such a way that α0, . . . , αn1 are not zero of V

γ

k , whereas αn1+1, . . . , αn are.
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Theorem 2.1. For i = 0, . . . , n − 1, we have the expressions

λ
γ

k,n−i−1 = (−1)n−i−1
n1∑

j=0

σ
(n−i)
j (α)

⎡
⎢⎣ m∑

l=1

4γj + 2

αj − θ
γ

k,l

+
n∑

l=0
l �=j

2(γl + γj )
2

αj − αl

⎤
⎥⎦ , (2.1)

where σ
(n−i)
j (α) denotes the (n− i)th symmetric function in the α parameters with αj deleted.

Because �
γ

k is an eigenfunction of �Sn corresponding to a spherical harmonics of degree
k, it follows that λ

γ

k,0 = k(k +n−1). If we apply the above result to the special case i = n−1,
we obtain the interesting identity

k(k + n − 1) =
n1∑

j=0

σ
(1)
j (α)

⎡
⎢⎣ m∑

l=1

4γj + 2

αj − θ
γ

k,l

+
n∑

l=0
l �=j

2(γl + γj )
2

αj − αl

⎤
⎥⎦ , (2.2)

where σ
(1)
j (α) = α0 + · · · + αj−1 + αj+1 + · · · + αn.

Proof. For a matter of simplicity, we will drop the γ and k indices throughout the
proof of theorem 2.1. The proof is a simple application of the residue calculus and the
theory of Vandermonde matrices. We begin by dividing each side of the generalized Lamé
equation (1.3) by

∏n
j=0(x − αj ) ψ(x) to obtain

1

4

∑n−1
j=0 λn−j−1x

j∏n
i=0(x − αi)

= 1

ψ(x)

[
d2ψ

dx2
+

1

2

(
n∑

i=0

1

x − αi

)
dψ

dx

]
. (2.3)

The left-hand side of (2.3) has simple poles at x = α0, . . . , αn1 . Therefore, we can
compute the residue at αi on both sides of (2.3) to derive n1 + 1 equations as follows. First,
we have

Res

[∑n−1
j=0 λn−j−1x

j∏n
j=0(x − αj )

, αi

]
=

[
(x − αi)

∑n−1
j=0 λn−j−1x

j∏n
j=0(x − αj )

]
x=αi

=
∑n−1

j=0 λn−j−1α
j

i∏
j �=i (αi − αj )

. (2.4)

Second, elementary computations yield

ψ ′(x)

ψ(x)
=

m∑
j=1

1

x − θj

+
1

2

n∑
i=0

γi

x − αi

, (2.5)

and

ψ ′′

ψ
=

∑
i<j

2

(x − θi)(x − θj )
+

(
n∑

i=0

γi

x − αi

) ⎛
⎝ m∑

j=1

1

x − θj

⎞
⎠

+
1

4

n∑
i=0

γi(γi − 2)

(x − αi)2
+

1

2

∑
i<j

γiγj

(x − αi)(x − αj )
. (2.6)

3
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Hence, (2.5) and (2.6) imply that

Res

⎡
⎣ 1

ψ(x)

⎛
⎝d2ψ

dx2
+

1

2

⎛
⎝ n∑

j=0

1

x − αj

⎞
⎠ dψ

dx

⎞
⎠ , αi

⎤
⎦

= 1

2

m∑
j=1

1

αi − θj

+
1

4

∑
j �=i

γi + γj

αi − αj

+
m∑

j=1

γi

αi − θj

+
1

2

∑
j �=i

γiγj

αi − αj

= 1

2

m∑
j=1

2γi + 1

αi − θj

+
1

2

∑
j �=i

(γi + γj )
2

αi − αj

. (2.7)

Combining equations (2.4) and (2.7), we conclude for i = 0, . . . , n1 that

1

2

n−1∑
j=0

λn−j−1α
j

i =
∏
j �=i

(αi − αj )

⎛
⎝ m∑

j=1

2γi + 1

αi − θj

+
∑
j �=i

(γi + γj )
2

αi − αj

⎞
⎠ . (2.8)

As for αn1+1, . . . , αn, they must be zeros of the corresponding Van Vleck polynomial V,
so

V (αi) =
n−1∑
j=0

λjα
n−1−j

i = 0 (2.9)

for i = n1 + 1, . . . , n.
Equations (2.9) and (2.8) can then be put in the matrix form A� = 2B with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 α0 α2
0 . . . αn

0

1 α1 α2
1 . . . αn

1
...

...
...

...

1 αn1 α2
n1

. . . αn
n1

1 αn1+1 α2
n1+1 . . . αn

n1+1
...

...
...

...

1 αn α2
n . . . αn

n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, � =

⎛
⎜⎜⎜⎝

λn−1

...

λ0

0

⎞
⎟⎟⎟⎠ ,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∏
j �=0(αj − α0)

[∑m
j=1

2γi+1
α0−θj

+
∑

j �=0
(γ0+γi )

2

α0−αj

]
...∏

j �=n1
(αj − αn1)

[∑m
j=1

2γi+1
αn1 −θj

+
∑

j �=n1

(γn1 +γi )
2

αn1 −αj

]
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since the α’s are distinct, the matrix A is an invertible Vandermonde matrix. Using the
results in [10], its inverse is given by

A−1 :=

⎛
⎜⎝ (−1)i+1 σ

(n−i)
j (α)∏

l �=j

(αl − αj )

⎞
⎟⎠ . (2.10)

4
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Consequently, the eigenvalues have the expressions

λn−i−1 = (−1)n−i−1
n1∑

j=0

σ
(n−i)
j (α)

⎡
⎢⎣ m∑

l=1

4γj + 2

αj − θl

+
n∑

l=0
l �=j

2(γl + γj )
2

αj − αl

⎤
⎥⎦ (2.11)

as desired. �

Since the zeros of φ
γ
m represents the equilibrium positions of an electrostatic system with

logarithmic potential [5], they must satisfy
m∑

l=1

2γj + 1

θ
γ

k,l − αj

+
∑
l �=j

4

θ
γ

k,l − θ
γ

k,j

= 0 (j = 0, . . . , n). (2.12)

These are usually known as the Niven equations [9]. From (2.12), we obtain the following
identities.

Corollary 2.2. For i = 0, . . . , n − 1, we have the expressions

λ
γ

k,n−i−1 = (−1)n−i−1
n1∑

j=0

σ
(n−i)
j (α)

⎡
⎢⎣∑

l �=j

8

θ
γ

k,j − θ
γ

k,l

+
n∑

l=0
l �=j

2(γl + γj )
2

αj − αl

⎤
⎥⎦ . (2.13)

In the special case γ = 0, the Lamé function ψ
γ

k reduces to the Lamé polynomial φ
γ

k . In
that situation, our identities take the following simple form.

Corollary 2.3. The joint eigenvalues of the operators Pl corresponding to eigenfunctions
that are the product of Lamé polynomials (γ = 0) satisfy the identities

λ0
k,n−i−1 = (−1)n−i−1

n1∑
j=0

k/2∑
l=1

2σ
(n−i)
j (α)

αj − θ0
k,l

= (−1)n−i−1
n1∑

j=0

∑
l �=j

8σ
(n−i)
j (α)

θ0
k,j − θ0

k,l

for i = 0, . . . , n − 1.

3. Asymmetric top

In the important case n = 2, the quantum Euler top is better known as the quantum asymmetric
top [1]. Namely, P0 = �S2 and

P1 = L := α0X
2
12 + α1X

2
02 + α2X

2
01.

From the introduction, we know that the joint eigenfunctions of �S2 and L corresponding
to spherical harmonics of degree k can be expressed as the product

�
γ

k (u1, u2) = ψ
γ

k (u1)ψ
γ

k (u2),

where the function ψ
γ

k is given by

ψ
γ

k (x) =
3∏

j=1

|x − αj |γi/2φγ
m(x) (3.1)

5
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and φ
γ
m(x) is a polynomial of degree m = (k − |γ |)/2. In addition, ψ

γ

k (x) is a solution of the
Lamé equation:

d2

dx2
φ

γ

k (x) +
1

2

3∑
j=1

1

x − αj

d

dx
φ

γ

k (x) = 1

4

k(k + 1)x − λ
γ

k∏3
j=1(x − αj )

φ
γ

k (x). (3.2)

Note that λ
γ

k appearing on the right-hand side of (3.2) is the eigenvalue of L associated
with the eigenfunction �

γ

k . In order to simplify our formulas, we can use the fact that (3.2) is
invariant under the linear transformation

T (x) = x − α0

α2 − α0
. (3.3)

Under T, equation (3.2) is transformed into another Lamé equation with α’s at 0, a = α1−α0
α2−α0

∈
(0, 1), and 1. In that particular situation, theorem 2.1 yields

λ̃
γ

k = 2(γ0 + γ1)
2 + 2a(γ0 + γ2)

2 + 2a

m∑
j=1

2γ0 + 1

θ̃
γ

k,j

, (3.4)

where λ̃
γ

k and θ̃
γ

k,j denote the eigenvalues and zeros when the α’s are at 0, a, 1. From the
definition of T, it is easy to see that for general α’s, the eigenvalues λ

γ

k and the zeros θ
γ

k,j are
given by

λ
γ

k = α0 + (α2 − α0)λ̃
γ

k and θ
γ

k,j = α0 + (α2 − α0)θ̃
γ

k,j .

This yields the following result.

Theorem 3.1. The eigenvalues of the asymmetric top L are either α1 or satisfy the identities

λ
γ

k = α0 + 2(γ0 + γ1)
2 + 2(α1 − α0)

⎡
⎣(γ0 + γ2)

2 + (α2 − α0)

m∑
j=1

2γ0 + 1

θ
γ

k,j − α0

⎤
⎦ .

As an interesting consequence of our last result, we can use the fact that λ
γ

k ∈
(α0k(k + 1), α2k(k + 1)) (see e.g. theorem 2.1 in [2]) to deduce

m∑
j=1

1

θ
γ

k,j − α0
� α2

α2 − α0
k(k + 1). (3.5)

Similarly, we can use Niven’s equation (2.12) to also obtain

m∑
j=1

4

θ
γ

k,j − θ
γ

k,0

� α2

α2 − α0
k(k + 1). (3.6)

From these inequalities, we deduce the following simple corollary.

Corollary 3.2. Let θ
γ

k,1 < θ
γ

k,2 denote the smallest two zeros of the Lamé polynomial φ
γ
m. We

have

θ
γ

k,1 − α0 � α2 − α0

α2k(k + 1)
and θ

γ

k,2 − θ
γ

k,1 � 4(α2 − α0)

α2k(k + 1)
.

6
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4. Conclusion

Our methods remain valid in the case where we assume the parameters α to be distinct complex
numbers. In that situation, the quantum Euler top has for complex analogs the Gaudin spin
chains of various types [7, 8]. Consequently, our results can be extended to those cases.

Recently, there has been many papers on the asymptotic properties of the spectral data
associated with the Euler top. However, many important questions are still open. One that
is of great interest consists of computing the level spacings distribution (LSD) for the energy
levels of the asymmetric top in the semi-classical regime (k → ∞). Based on the Berry–Tabor
conjecture in quantum chaos [4], one expects that the LSD for quantum completely integrable
systems to follow a Poisson process. It would be interesting to see if the spectrum for the
quantum asymmetric top also behaves like a sequence of independent random variables. In
earlier work [3], we computed the LSD for the zeros of Lamé functions in various asymptotic
regimes. We are hoping to combine these results with those presented in this paper to compute
the LSD for the spectrum of the quantum asymmetric top in future research work.
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